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Stability versus Resilience

A. Molchanov

Abstract

The complexity of biological systems (their structural
hierarchy) points out dynamically the time-scales hierarchy

of different processes.

This leads to the hierarchy in the motion of stability.

Rapid processes do not have full y stable, but "metastable"
states and evolve slowly into the exact eguilibrium state.

The notion "lability" (well known in medicine) reflects
the existence of the surface of the possible quasi-equilibrium

states.

Resilience (in my opinion) is only a particular case
(and not defined rigorously) of the notion "adaptivity"
(also well known). But the definition of adaptation
follows from the idea of stability, which is presented
more precisely below.

Hierarchy of Time Scales

I. Rapid and Slow Variables

Correct models of bioclogical (ecological, in particular)

systems usually contain a small parameter ¢
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where € is the ratio of characteristic times
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Rigorous study of such systems was begun in the well-known

work of A.N. Tikhonov. The trajectories structure can be found

supposing that € = 0
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In the new system vector x is constant,
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and, consequently, performs the role of a parameter
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Stationary state of this system are found from the

-)->->
f(o,y) =0

Let us consider the simplest possiblity when ; and o are
scalars. Even in this case, the set of stationary states is

not a discrete collection of isolated fixed-points but a con-

tinuous curve on the surface (ao,y).
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equation

Just the rich structure of equilibrium (to be more exact,

quasi-equilibrium) state sets determines the complexity of the

stability area concept.
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For instance, let the equation f(a,y) = 0 have a number of

solutions with different o,
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Figure 1.

Two semi-infinite branches of stable quasi-equilibria are
connected by the arc of unstable ones. The upper branch corr-
esponds to the "working-state" of the system, the lower branch

describes the possibility of hysteresis.

IT. The Evolution System

Now remember that the system (5) approximately describes
a complete system. We shall bring back a slow evolutional
motion. In our simplest case it is enough to solve a guasi-

equilibrium equation
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and to introduce y into the first equation of the exact system

g—}t{ = ¢ alx,Y(x))

One should keep in mind that evolution takes place in a different

way on each of the branches of the guasi-equilibrium curve
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Figure 2.

with approximate equilibrium on the curve M of metastable
states. On the upper brance the exact state (A) is stable, on

the lower one it is unstable (B).

III. External Perturbations

Let us analyze the situation depicted on Figure 2 in a more
detailed manner and show that knowing the curve M and the points
A, B, Q on it fully determines the system behavior with regard

to perturbations.
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Figure 3. Splitting of the curve M into three branches:
AQ1is a metastable brance, RB an adaptive brance and
BB an unstable branch.

If the perturbation moves the system to any point of G1
area then its future will be the same as for the point P1.
The system will rapidly move to the upper "work-branch" of
the curve M and will slowly return to the exact state of equilibrium.
Point P2 is a typical representative of the G2 area. The
events take a different turn. The system rapidly falls into the
"shock-state", remains in it for a long time (while the evolution
R2 + R is taking place), but in the long run, "collects its
strength" and returns to the "work branch" and only to the point
S. Then slow restoration takes place, that is evolution S - A.

Coming to G, area means death of the system if we mean by

3
this the impossiblity to return to the work state that is on

the upper branch.

IV. Stability and Adaptivity

Mutual disposition of the points A and B on the curve M can

greatly change the character of the system reaction to perturbation.
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weakly stable but greatly greatly stable, practically
adaptive system non-adaptive system

Comparing these two figures reveals an important difference
between adaptive and stable figures.

The adaptive system "falls into a shock state" already in
case of small perturbations but is able "to recover" even after
strong shocks.

The stable system without adaptation on the contrary,
preserves its "working ability" even in case of great perturbations

but falling into a shock state almost means death for it.

V. Resumé

The concept of resilience is related to the concept of
metastability of a rapid motion rather than to the traditional concept

of stability. The contrasting of resilience and stability arises
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if slowly changing variables are treated as parameters but
everything implicitly takes its own place if evolutionary
system variations are taken into consideration.

A general stability concept may reasonably be specialized
for systems with a time-scale hierarchy. The concept of meta-
stability may be reserved for describing stability of cut down
systems of rapid motions.

A stability of slow motions may be described by the well-
known term "adaptivity."

The term "resilience" may be used as a synonym of adaptivity
for the particular case of ecological systems.

Such an approach allows for a rigorous definition of the
resilience concept which previously was introduced at an intuitive

level.



